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Abstract and Summary

Deep precision strike is a generic military operation that depends
importantly on C4/ISR system contributions. Information from the
latter is realistically subject to chance influences: targets are found and
correctly identified generally at rates proportional to their numbers,
locations, and activities, and to the coverage of shooter-serving
sensors; the events of detection are realistically random, as are the
delays, results, outcomes, and follow-up of the targeting shooters. In
this paper a simplified version of the above complicated process is
analyzed mathematically, here as a multi-stage queuing process with
imperfect service. The probabilistic outcomes can be used to anticipate
the results of higher-resolution simulations; these often are far more
time consuming both to set up and run.

Aspects of the above queuing situations can also be deduced via a
deterministic "fluid" queuing approximation that gives an adequate
and convenient representation of aspects of the state variables and
various Measures of Effectiveness in the stochastic queuing model.
Relying on that agreement, we have elsewhere generalized the
stochastic queuing model setup to fluid models that incorporate
omitted realities, such as losses from target-list tracking, and the
inevitable time dependencies, non-stationarities, and adaptive
behaviors that typically occur in actual military operations or
vignettes. Both the stochastic and deterministic model results are
informative and produce reasonable insights. Further validation steps
using mathematical probability techniques as well as simulation are
planned; some are in progress.

• It is ironic, but of interest and potential value, that strong
abstract correspondence exists between the deep, precision strike
situation described and for which our models have been formulated,
and certain disaster relief scenarios. In these, the deep-strike targets
are identified as disaster victims (human, or infrastructure), the
C4/ISR sensor assets are discovery-medical diagnosis and triage
systems, and the deep-strike weaponry ("shooters") is replaced by
suppliers of medical service. In both cases time sensitivity and
uncertainty exacerbate the decision problems. Force composition and
structure questions translate into very similar questions and issues
for these two important topics of modem military concern. This is an
argument for the cost-effectiveness of pursuing an abstract model
type that has a range of applications and provides broad insights.
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0. Overview

Battle damage assessment (BDA) is an aspect of "hard" battlespace

information war (IW)/information operations (10) that promises to add to the

efficiency of combat engagements. In spite of the precision of modem weaponry

and sensor/communication system, shots fired at targets will occasionally miss

(or cause only partial damage). Consequently a sequence of several shots may be

directed at a particular (hostile) target to increase the probability of kill. This

paper examines the efficacy of a shooting strategy that depends upon

information: that of shoot-look-shoot.

In the shoot-look-shoot tactic the targeter (Blue) fires once at an acquired

target (Red). He then "looks" at it and classifies it as alive or dead: if the target is

classified as alive, he shoots at it only once more. An acquired target is never shot

at more than twice on a particular occasion. A target that has been shot at twice

must be reacquired to be classified as being alive or dead; that is, a (hostile)

target that survives two shots must be reacquired to receive more shots; in the

meantime it can itself launch weapons, or advance to pursue an advantage.

An effective BDA capacity can greatly reduce the opponent's options and

effectiveness by increasing the chance that a targeting mission is successful and

that this fact is known to the targeter. On the other hand, seriously error-prone

BDA tends to clog target lists with unprofitable already-dead "targets" that

vastly hamper the shooter s response time, hence kill rate, and wastefully inflate

the expenditure of missile inventory.

Section 1 describes and presents results for a stochastic queuing network

model of the situation described. The queuing network model allows closed-form

calculation of long-run distributional results that are easily turned into numbers

and graphs without the need for Monte Carlo simulation. It is almost always



difficult to obtain mathematically neat closed-form time-dependent results for such

a queuing model; simulation or numerical calculations are required. Section 2

presents a deterministic or expected-value approximation to finite server queues

of the type above. Sections 3 and 4 present deterministic approximations to the

network queuing model of Section 1; the agreement with the mean values of the

stochastic model tends to be very satisfactory, but no information on state

fluctuations or risk is available from such models.

Papers that discuss similar problems and contain further references are

Almeida, Gaver, and Jacobs (1995), and Gaver and Jacobs (1987); see also Evans

(1996), Aviv and Kress (to appear) and Manor and Kress (to appear).

1. An Aggregated Queuing Model of Defensive Targeting when Service

Success is Assessed with Error, and the Shooting Protocol is Shoot-
Look-Shoot

1.1 The Model

Suppose attackers that are targets for a defensive force appear in region t at

a constant Poisson rate X,. The time until an unacquired target that is not itself

firing is detected by a surveillance system is distributed exponentially with mean

1/ý. A live target thai is detected is classified as live and put on the shooter

servers' targeting list with probability Raa. With probability (1 - Raa), it is

misclassified as dead and returns to the una quired state. A dead target that has

not yet been classified as dead is classified as dead when it is acquired with

probability Rdd and is removed from the system; with probability (1 - Rdd) it is

classified as live, and is erroneously and wastefully put on the targeting list.

The times between shots by a live Red potential target, such as a TEL (e.g.

SCUD or anti-air missile launcher) are independent identically distributed
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exponential (Markovian) with mean 1 /a An unacquired firing target is detected

and put on the shooter s targeting list with probability pA after it fires.

A detected target that has been classified as targetable (perhaps

inappropriately because dead) is viewed as queued and awaiting attention of one

of s (s = 1, 2, ... ) shooters/" servers"'; these can be thought of as missile launchers.

Service times for a shooter can be viewed as realizations of a random variable

that includes, implicitly, time for the target waiting in the detected queue

(residing on the target list), conveyed by C4ISR, to be converted to tracking-firing

information; it also includes time of flight in this model.

We assume a shooter server uses a shoot-look-shoot protocol. A shot kills a

target with probability pK. A (possibly erroneous) battle damage assessment

occurs immediately after the first shot. If the first shot kills the target then, with

probability Cdd, the target is correctly classified as dead and is appropriately

ignored from then on; with probability (1 - Cdd) the target is incorrectly classified

as live and it is shot at once again. If the first shot misses the target, then with the

probability Caa the target is classified as live and the target is shot at a second

time; with probability (1 - Caa) the target is misclassified as dead and returns to

an unacquired state. No battle damage assessment occurs after the second shot;

the shooter immediately moves to the next enqueued targetable unit. Once a

dead target is classified as dead it is taken out of the system.

1.2 Number of Times a Target is Shot At

In this section we obtain expressions for the expected number of times a

target is shot at with variations in the way the implied question is phrased.

3



1.2.1 Number of times a target that starts as unacquired is shot at while it is

alive: SAA

E[SA]= lpK + 2(1-PK)COpPK +(1-pK)C•(1 -PK)[2+E[SA]]
1st shot 1st shot misses the
kills the target; the target is
target correctly classified;

the 2nd shot kills
the target

+(1- PK)(1 -- Caa)[1 + E[SAA]].

Solving,

PK + 2(1-pK)Caa +(1-PK)(1-Caa) -1(1.2.1)
1 (i PK)Caa(1 PK)-(1-PK)(l-Caa) PK(.2)

Note that E[SAA] depends only on PK, despite the uncertainties of perception

(Caa < 1); also, the result does not depend on Cdd or Cda = 1 - Cda. The BDA

process has no influence on this particular measure.

1.2.2 Number of times a dead target that starts as unacquired is shot at until it is

classified as dead: SD

E[SD] Rdd x 0+ (I-Rdd) [lCd + (1-Cdd) [2+4SD]
prob the prob the shooter shooter
sensor sensor takes one misclassifies

correctly incorrectly shot and target after
classifies classifies correctly 1st shot
the dead the dead classifies

target target target

Solving

E[- (1- Rdd)[l+(1-Cdd)]
E[S ]=-( 1 -R.d-d )(--dd ) . (1.2.2)

Note that this does not depend on the true kill probability, PK, neither does it

depend on Caa.
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1.2.3 Number of times a live target that starts as unacquired is shot at until it is

killed and classified as killed: SAD

E[SAD]= PKCdd + [ (1-PK)CAPK + pK(1-Cdd) ][2+E[SD]]

prob target prob target is killed prob killed
is killed on on 2nd shot on 1st shot and
1st shot and tagstt assified so

classifled shot at 2nd time
as dead

+ (1 -PK( Caa)[1 +E[SAD]] + (I1 PK) 2Caa [2 + E[SA4D]

prob 1st shot prob Ast shot
misses and target misses, target

misclassified correctly classified
as dead as live and 2nd

shot also misses

Solving

E[SAD] =

PKCdd + [(1 PK)CaaPK + PK(1 - Cdd)][2 + E[SD ]] + (1 - PK)(1 - Caa) + 2(1 PK)2 Caa

1 [(1- PK)(1- Caa) + (1- PK)2Caa]

1 PK [Rdd -CddI=PK+[ ' [I_-[(I_ -pK)(IC Q) + (I_ -PK)2Caa]] 1(-Rd(-d)

- PK[Rdd -Cdd]
PK [1- (1- PK)[ - pKCaa]] [I - (1 - Rdd)(1 - Cdd)] (1.2.3)

1- + [(1 -Cdd)[1 + (1 - Rdd)] +(1- PK)Caa(I - Rdd)[1 +(1 -Cdd)I]]
PK [1 +(1-pK)Caal [1 -(1- Rdd)(1-Cdd)]

Note that changes in the values of Rdd and Cdd most strongly influence E[SAD]

through E[SDI. If Cdd = Rdd, then E[SADI is independent of Caa. It is clear that the

capability to correctly identify dead targets as dead is of great importance to

minimize wasted shots, and (1.2.3) quantifies this dramatically: for small Cdd -

Rdd, the above reduces to EISAD] I /pK + 1/ Cdd.
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1.2.4 Number of times a live target that starts as unacquired is shot at while it is

dead: SDD

E[SDD] = E[SAD] - E[SAA] (1.2.4)

=1/Cdd if Cdd is small.

1.3. Number of Times a Target Passes Through the Surveillance System

In this section we obtain expressions for the expected number of times a

target passes through the surveillance system.

1.3.1 Number of times a dead target that starts as unacquired passes through the

surveillance server until it is classified as dead: LD

E[LD]= lRdd +1(1-Rdd). Cdd + (1 -Rdd)(1 - Cdd)[i + E[LD]]

sensor shooter
correctly correctly
classifies classifies

dead target after
target 1st shot

Solving

E[LDI=
1-(1- Rdd)(1- Cdd)

1

- (Rdd +Cdd)

if Rdd and Cdd are small. This indicates the extra load imposed by futilely

processing dead targets.

1.3.2 Number of times a live target that starts as unacquired passes through the

surveillance server until it is killed and classified as dead: LAD

Let LAD be the number of times an unacquired live target passes through the

surveillance server until it is killed and classified as dead.
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~-~-' prob live
prob live target

target misclassified
detected by sensor

by sensor

{,Raa[l÷ (PKCdd x 0) +PK (I-Cdd)E[LD]]

prob target
kil ed on 1st shot

and correctly
classified

prob target iprob target
not killed 'incorrectly

on 1st shot classified

+1- PK)CaaPKE[LD] + (1 - PK)Caa (1 - PK)E[LAD II

+ a (1- PA) [1 +E[LAD]

prob shooting
prob live target target is not put

is detected on targeting list
because it shoots

+ PA± f + OPKCdd + PK (I - Cdd)E[LD] + (1- PK) (1 - Ca)E[LAD]

+1- PK)CaaPKE[LD]I + (I - PK)Caa (1 - PK)E[LADI}

Solving,

4 LAD I =
I +( R + a PA i[PK (1 Cdd)E[LD] +(1- px)CaaPKE[LD]

-1+(AýR. + aPA)E[LD)]PK[( - Cdd) +l- PK)Caa]

[ýL+a ý+UR= PAlI9K[1 +Caa(1 mvK)]
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Small changes in Raa and PA, wilen they are small, can greatly affect E[LADI.

Small changes in Cdd and Rdd can also greatly affect E[LADI through E[LD].

1.3.3 Number of times a live target is acquired before it is killed: LAA

E[LA,4]=l+ a {( - Raa)E[LAA + Raa[( - PK)(1 - Ca)+ (1- PK)2Ca]E[LAA]}

+ '{(1- PA)E[LAA] + PA[(l-PK)(1-Caa)+ (1-PK)2Caa]E[LAA]}

Solving

E[LAA]

1
-a X- a (1- PA) ]+ [- Ra + •-- aPA ][(1 - PK)(1 -Ca.)I+ (1 - PK(

1

___ +a 1

Note that small changes in Raa and PA when they are small can result in non-

linearly large changes in E[LAA].

We now discuss the queuing model.

1.4 Mathematical Details of the Queuing Model

Important operationally relevant questions about the system can be

addressed in terms of a queuing model. The targets are customers. They are

either unacquired or queued and awaiting attention of one of s (s = 1, 2, ... )

shooters/"servers".
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1.4.1 The shooting server

We will say a target is of type (as, bs) if it requires as shots while it is alive and

an additional bs shots to classify the dead target as dead. The type of each target

is independent of the types of other targets. The expected number of shots

required by a target that has arrived to the region is E[SADI. The total arrival rate

of targets to the shooter service system including those that are retargeted is

.AE[SAD].

Assume the target list queue for the shooters evolves as follows (cf. Kelly

[1979]):

a) Each customer (target) requires an amount of service which is a random

variable exponentially distributed with unit mean.

b) A total service (shooting) effort is supplied at the rate

(Pn) = P midn(s, n)

when there are n targets waiting or being served.

c) A proportion )(f, n) of this effort is directed to the customer (target) in

position i in the queue (t = 1, 2, ... , n) where

1
- • =1,2,...,n, n=1,2,...,s
n

'y(in)= - =1,2,...,s, n=s+l,s+2,... (1.4.1)

0 otherwise

d) When a customer arrives at the queue he moves into position I with

probability

10 ý=n+l

1) 0 otherwise (

9



when there are n target-s waiting or being served.

The shooter service system behaves as an M/M/s queue with mean service

time 1/y.

Let Xs(t) be the number of targets waiting for service or being served by the

shooter service system at time t. Corollary 3.4 of Kelly [19791 implies that if )S a

2,E[SADI < ps, then a limiting distribution exists.

lim P{Xs(t) = n}= 7rs(n)
t--->o

with

ZS # n (0) for n = 0,1 s

rs (n) =(1.4.3)
--I- s(O) for n = s+1,s+2,...

with

n=OY n Sy S! 1 -1A IY

If 2,S > sy then the effective arrival rate of targets is at least as large as the

maximum service rate and lim P{Xs(t) = n} =0 for n = 0, 1, . The servers are
t--00

saturated and the population of unserved targets increases linearly beyond all

bounds. Henceforth, assume AS < pis.

The long-run mean number of targets waiting for shooter service or being

served is

E[X(= -L+ s(O[1_ .Ps/ (1.4.4)

10



The long-run mean queue length at the shooter is

E[QS] ;s(O) 1 (-XSS- I[ S/Ps (1.4.5)
S! Pi [1 - (As/PuST]

Both of these expressions reveal the substantial nonlinearity of shooter backlog,

hence delay: if arrival rate of targets, /, were to increase, backlog skyrockets; but

a similar and synergistic effect occurs if E[SAD] is high because of incorrect

classification. The model quantifies the possibly substantial effect of improving

classification capability on overall targeting performance and can be used to

study the tradeoff between good classification and traffic handling capability.

It follows from Theorem 3.1 of Kelly [1979] that the long-run mean number of

live targets waiting for or receiving service by the shooter is

E[Xs(-)] E[SAA] (1.4.6)

The mean number of shooter/servers that are busy is

s1(2,1,)k s __X__

E[S] = ffS(O{X I k +s (1.4.7)

L ~sy

The mean number of shooter/servers that are serving live targets is

E[SA ] = E[S] E[SAA] (1.4.8)E[SAD]"(.48

The long-run mean rate at which live targets are killed is

PK = E[SA]IUpK.

We will model the surveillance system similarly but as behaving as an infinite

server queue with mean service time 1/(ý + a), where a is the rate at which

11



targetable opponents reveal themselves by taking offensive action, e.g. shooting

SCUDs.

The long-run mean number of undetected targets (both live and dead) is

E[XL(o]) = AE[LAD] (1.4.9)

The long-run mean number of live undetected targets is

1LE[L E[LAA]_ = X1E[LAA] (1.4.10)

)EAD] ,-+ E[LAD] c+a

From Little's formula, the mean time it takes to kill a target and classify it as

dead is

W = [E[XL(oo)] + E[XS

The mean time it takes to kill a target is

WA = E[LAA] +. E[SAA] 1 E[Xs(oo)]
E[SAD] A

The mean number of offensive shots (SCUDs launched) by a Red target is

aWA. All of the above expressions can easily be numerically tabulated; see below.

Numerical Examples

In the numerical examples, the arrival rate of targets to the area is 15/hr; the

rate of target detection by the sensors is ý = (1/2)/hr; the rate of firing by a Red

a = (1/2)/hr; the service rate by a Blue server = 3 per hour; there are 20 Blue

servers; the PK = 0.5. This is an entirely hypothetical set of numbers and is offered

only as a very roughly plausible illustration.

Figure 1.1 presents the average time to kill a Red as a function of PA, the

probability that a firing Red is put on the targeting list. Increasing PA from 0.1 to

0.8 reduced the average time to kill a target from over 2 hours to about 1 hour.

12



The average time to classify a dead target as dead is about an hour. The other

classification probabilities are RP = 0.5, Rdd = 0.7, Caa = 0.5, Cdd = 0.5.

Figure 1.2 presents the average rate of Red shots per hour as a function of pA.

Increasing PA from 0.1 to 0.5 reduces the Red shots per hour from about 45 to 30;

further increases in PA are less influential unless, say, shooting rate and/or kill

probability are increased.

Figure 1.3 displays the mean number of shots fired by a Red target as a

function of PA for 2 different values of sensor acquisition rate, 4, one "low' ý =

0.5/hr and one "high" ý = 2/hr. Note that if the sensor acquisition rate is high,

then the value of PA has little effect.

Figure 1.4 displays the mean number of Blue shots to kill a Red target and the

mean number of Blue shots to kill a Red target and classify it as dead as a

function of Cdd. Since PK = 0.5, the mean number of shots to actually kill a Red

target is 2. However, the mean number of additional Blue shots expended until a

dead Red target is classified as dead can be dose to 2 for small Cdd (it could

approach -, if Rdd were also small) but is negligible for Cdd - 1. Ability to classify

well is seen to be extremely influential on shooter system efficiency.

Figure 1.5 displays the traffic intensity at the shooting service system as Cdd

varies. A traffic intensity larger than 1 means that the service system is unstable

and won't be able to handle the work load presented to it. With other parameters

fixed as shown, the value of Cdd must be close to 0.3 or greater in order for the

queue to be stable, i.e. not to eventually grow beyond bounds. Even if Cdd = 0.3

the mean number of targets (both live and dead) waiting or being served at the

service system will be unacceptably high; the queue, and delay, can be brought

down quickly and substantially by increasing Cdd. This step also cuts into Red

effectiveness.

13



Figure 1.6 displays the limiting distribution of the number of targets waiting

for or being served by the shooter-servers (1.4.3). The model parameters are A, =

15, ý = 2, a = 0.5, Raa = 0.5, Rdd = 0.6, Caa = 0.5, PA = 0.5, pK = 0.5, P = 5, s = 10. The

upper graph displays xrs(n), n = 0, 1, ... where Cdd = 0.3. The lower graph

displays irs(n), n = 0, i,... where Cdd = 0.8. Table 1.1 displays the mean and

variance of the number of targets waiting for or being served by the shooter-

servers.

Table 1.1
Moments for Limiting Distribution of the Number of

Targets Waiting or Being Served
,=15, =2, a =0.5, Raa = 0.5, Rdd 0.6, Caa= 0.5, PA = 0.5, pK 0.5,.U= 5, s =10

Cdd Mean Variance
0.1 - -

0.2 -

0.3 62.3 3543.0
0.4 16.9 132.3
0.5 11.8 43.9
0.6 9.6 23.3
0.7 7.4 15.4
0.8 7.6 11.5
0.9 7.0 9.3
1.0 6.4 7.9

-Queue is saturated

The poorer the ability to classify a dead target as dead, (lower Cdd), the

greater the variability in the number of targets waiting or being served by the

shooter servers. The graph of the limiting distribution with Cdd = 0.3 indicates

that the distribution has a very long and heavy right hand tail; there is a sizable

probability that more than 100 targets are waiting for service or being served; the

heavy tail is reflected in the variance of the distribution which is 3543, compared
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with a mean of 62.3. In comparison, when Cdd = 0.8, the tail of the limiting

distribution is much shorter; this shorter tail is reflected in a variance of 11.5

compared to a mean of 7.6.

2. A Fluid Approximation for the Number of Customers Waiting or
Being Served in an M/M/s Queue

Consider an M/M/s queue with Poisson arrivals having rate ),, independent

exponential service times with mean 1 /y and s servers. Let N(t) be the number of

customers waiting or being served at time t. Assume I, < sp.

A deterministic approximation to (N(t), t > 0) is

dN(t) I - AN(t)H(t) (2.1)
dt

where

H(t) = [1 +(,4)(-J N(t)] (2.2)

Letting t -- c in (2.1) results in

La = N(-) = . (2.3)

If s = 1, 2, then N(-) is exactly. equal to L, the long run average number of

customers waiting or being served in a M/M/s queue. Figure 2.1 presents plots

of (L - Ia)/L for the number of servers s = 5, 10, 20 as a function of X/p. Note that

the approximation La is always less than L Further the approximation becomes

less exact as the queues' traffic intensity increases. The size of the error also

increases as the number of servers increases. For 10 servers the approximation is

at no more than 10% lower than the true. The approximation appears adequate

for moderate numbers of servers.
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The approximation with H(t) equal to (2.6) for s = 1 has been proposed by

Agnew (1976) and Rider (1976); see also Filipiak (1988).

3. A Deterministic Model forDefensive Targeting When Service

Success is Unknown and Shooting Strategy is Shoot-Look-Shoot

In this section we present a deterministic or expected-value approximation to

the stochastic queuing network model of Section 1. While this deterministic

model supplies useful information about systematic process behavior (e.g. time

dependencies) it cannot reveal the form of the random variations in targets

queued for shooting, as in Table 1.1 and Figure 1.6. (Note that in Table 1.1 the

variance of queue length is approximately (mean queue length)2 for large queue

length, descending to a variance of queue length nearly equal to the mean queue

length when the latter is small.)

Again suppose attackers that are targets for a defensive force appear in region

F at a rate I,. The time until an unacquired target that is not itself firing is

detected by a surveillance system is distributed exponentially with mean 1/ . A

live target that is detected is classified as live and put on the shooter servers'

targeting list with probability Raa; with probability (1 - Raa) it is misclassified as

dead and returns to the unacquired state. A dead target that has not yet been

classified as dead is classified as dead when it is acquired with probability Rdd

and is removed from the system; with probability (1 - Rdd) it is classified as live,

and is erroneously put on the targeting list.

The times between shots by a live target are independent identically

distributed exponential (Markovian) with mean 1 /a An unacquired firing target

is detected and put on the shooter's targeting list with probability PA.

A detected target that has been classified as targetable (perhaps

inappropriately because dead) is viewed as queued and awaiting attention of one

16



of s (s = 1, 2,...) shooters/"servers". Service time for a shooter can be viewed as a

random variable that includes, implicitly, time for target presence in the detected

queue, conveyed by C4ISR, to be converted to tracking-firing information; it also

includes time of flight in this model.

The shooter-server uses a shoot-look-shoot protocol. Parameters are the same

as before: a shot kills a target with probability p!G BDA occurs immediately after

the first shot, so the first shot kills the target then with probability Cdd the target

is classified as dead and is ignored from then on; with probability (1 - Cdd) the

target is classified as live and it is shot at again. If the first shot misses the target,

then with the probability Caa the target is classified as live and the target is shot

at a second time; with probability (1 - Caa) the target is misclassified as dead and

returns to an unacquired state. No battle damage assessment occurs after the

second shot; the shooter immediately moves to the next enqueued targetable

unit. Once a dead target is classified as dead it is taken out of the system.

3.1 The Effective Arrival Rate of Targets to the Shooter-Server

Let A•u(A), (respectively Au(D)), be the effective arrival rate of live

(respectively dead) targets to the undetected state. Let A0(A), (respectively 0o(D)),

be the effective arrival rate of live (respectively dead) targets to the shooter-

server targeting list for a first shot. Let ;,I(A), (respectively ' 1 0(D)), be the effective

arrival rate of live (respectively dead) targets put again on the targeting list for a

second shot.

The effective arrival rates satisfy the following equations.

2Au(A) = A, + AO0(A)(1- PK)(1- Caa)+ A1 (A)(1- PK)

+u (A)__ (1- Raa) +_a (,_,pA~ "(3.1.1a)
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,1()= 2L(A)(1 - PK)COa (3.1.1c)

Au (D) = Al (A)PK + .al1(D) (3.1.1d)

kO(D) = A(D)[1-Rdd] (3.1.1e)

1(D ~A0(D)[1 - CddI + AO(A)PK[l - Cdd]
(3.1.1f)

=,Z 4a(D)[1 - Rdd][1 - Cdd] +;AO(A)pK[l - Cdd]

Note that

~AU(D) = a,l(A)PK + ;aU(D)[1 - Rdd]l1 - Cdd] + 4(A)PK[l - Cdd]. (3.1.2)

Thus,

; ( ) - L,(A)PK +)LO(A)PK[1-Cdd] (3.1.3)
i-[i- Rdd][1-Cdd]

Let

0=_L_ Ra+ a PA; (3.1.4)

then,

13[1 - (1i PK)( - C=) - (1 - PK)C (3.1.5)

and

;L (A) /12(1 - PK)Ca )C 316
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Put

,1E = ;L(A) +1j,(A) + ;(D)+).j(D). (3.1.7)

3.2 A Deterministic Network Queuing Model Involving Shoot-Look-Shoot

Consider the following variables.

Au(t) = number of undetected live targets at time t

Ao(t) = number of detected live targets that are on the shooter servers'
targeting list and are waiting for the first shot at time t

Ai(t) = number of detected live targets waiting for the second shot at time t

DO(t) = number of undetected dead targets that have not yet been classified
as dead at time t

Do(t) = number of detected dead targets that have not yet been classified as
dead and are waiting for the first shot

Di(t) = number of detected dead targets that have not yet been classified as

dead and are waiting for the second shot

Ka(t) = Number of Reds killed by time t

K(t) = Number of Reds killed by time t which are classified as dead

R(t) = Number of Red shots by time t

B(t) = Number of Blue shots by time t

The variable XS(t) in the stochastic model of Section 1 corresponds to Ao(t) +

Al(t) + Do(t) + Dl(t).

Consider the following parameters.

2;. = Rate of arrival of Red attackers to region

ju = Rate at which acquired targets are served by a shooter-server

v = Rate at which acquired live targets are lost from track

a = Rate at which attackers are active
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= Rate at which a target is detected by the defender sensors

pK = Probability a live Red target is killed

Caa = Probability shooter classifies a live target as live after shooting

Cdd = Probability shooter classifies a dead target as dead after shooting

Raa = Probability a live target is classified as live by a defender sensor

Rdd = Probability a dead target is classified as dead by a defender sensor

PA = Probability an active shooting Red is acquired by the server

Let

H(t)= + P (. )[Ao(t)+ A(t)+D0(t)+Dl(t)] ; (3.2.1)

H(t) is a term to approximate the behavior of an M/M/s queue (as described in

Section 2).

Consider the following deterministic model as an approximation to the

network of queues model (as described in Section 1).

dAu (t) - , +; v(A0(t)+ Al(t)) -apAAU(t)- ,RaaAu(t)
dt riva rate rate of loss of active rate of rate of acquisition

of targets Reds from track acquisition due to sensors
due to Red

activity (3.2.2a)

+ ll(1-pK)Al(t)H(t) + ,l(1-'pK)AO(t)(1-Caa)H(t)

active still alive after 2 shots active Red alive after first shot
misclassified as dead

dAo(t)- = opAAU(t)+ •RaaAu(t) - pA0(t)H(t)- vAo(t) (3.2.2b)
dt

dA(t) = UAo(t)(1-pK)CaaH(t) - P.A(t)H(t) -vAl(t) (3.2.2c)
dt .,- -,- --

active Red alive after first shot, rate at which Red
classified as alive actives are shot at

a second time
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dDt(t) A41(t)pKH(t) - ýDu(t) + LDl(t)H(t) (3.2.2d)

dt I
active Red killed on rate at which rate at which

2nd shot dead Red not dead Red not yet
yet classified as classified as dead
dead is acquired is shot at second time

by sensor

dD(t) - (1-Rdd )Du(t) - ,uDo(t)H(t) (3.2.2e)

dt
rate at which rate at which

dead Red not yet dead targets not
classified as dead classified as deadis acquired by sensor are shot at

and classified as live

dDt W ,PK(1-Cdd)Ao(t)H(t) + D0o(t)(1-Cdd)H(t)-PDl(t)H(t) (3.2.2f)

rate at which a live Red is
killed on 1st shot but is

misclassified as live

dKa(t) = PPK(A°(t) + Al(t))H(t) (3.2.2g)

dt)

dt = •PKCddAO(t)H(t)+ ýDU(t)Rdd + cddD°(t)H(t) (3.2.2h)
dt

dR(t) = a(Au(t)+A0(t)+Al(t)) (3.2.2i)

dB(t) = 4u(A0 (t) + A, (t) + Do (t) + D (t))H(t) (3.2.2j)
dt

3.3 Numerical Results

Consider a model with the following parameters: , = 15, • =2, a = 0.5, Raa =

0.5, Rdd = 0.6, Caa = 0.5, PA = 0.5, PK = 0.5, it = 5, s = 10. Table 3.1 displays the long

run average number of targets waiting or being served by the shooter-servers

and the long run average number of live targets waiting or being served by the

shooter-servers as a function of Cdd for the queuing network model of Section 1.

Also displayed are the values of the total number of targets waiting or being

served at the shooter servers, AO(300) + AI(300) + D0 (300) + Di(300), as a function
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of Cdd and the long run average number of live targets waiting or being served at

time 300, AO(300) + A1(300), for the deterministic model. The deterministic model

was evaluated using the 4 th/ 5 th order Runge-Kutta-Fehlberg method as

implemented in MATLAB. The agreement is good where both models apply. The

deterministic model is able to (quickly) estimate the expected number of live

(opponent) targets at time t (= 300, here) even when the sensor-shooter system is

saturated.

Table 3.1
Targets Waiting or Being Served by the Shooter Servers

Cdd M/M/10 Deterministic M/M/10 Deterministic
Average Number of Average Number of

Number of Targets at Number of Live Targets
Targets time 300 Live Targets at time 300

0.1 - 3687.0 2797.0
0.2 - 2279.0 - 1524.0
0.3 65.3 63.6 39.8 38.9
0.4 16.9 15.7 11.1 10.3
0.5 11.8 10.8 8.2 7.6
0.6 9.6 9.0 7.2 6.7
0.7 8.4 7.9 6.7 6.4
0.8 7.6 7.3 6.5 6.2
0.9 7.0 6.7 6.3 6.1
1.0 6.4 6.3 6.2 6.1

- queuing model is saturated

4. A Nonstationary Network Queuing Model Involving Shoot-Look-

Shoot

Letting ;L -- 0 in the model of Subsections 3.1 and 3.2 will result in )LE = 0. The

function H of 3.2.1 will tend to 1 and the service process will be similar to an

infinite server queue.
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Since it is important to model the transient behavior of the system under a

nonstationary arrival process of targets, we will modify the effective arrival rates

as follows:

)o(A,t) = AU(t)[ Raa + apA] (4.1a)

),1 (A,t) = 4o(A,t)(1-pK)Caa (4.1b)

kO(D,t) = Du(t)ý[1 - Rdd] (4.1c)

A,(D,t) = o(D,t)[1 - Cdd] + 2o(A,t)pK[1 - Cdd]. (4.1d)

The effective arrival rate at the shooter server is

AE (t) = Ao(A,t) + ;L1(A,t) + 4o(D,t) + ,I(D, t). (4.2)

Put

H(t)= 1+ A('IEt [Ao(t)+Al(t)+Do(t)+Dl(t)] . (4.3)

H(t) is a term to approximate the behavior of the M/M/s queue.

The deterministic model equations of Section 3 remain the same except for

replacing A by (possibly) A(t) and using H(t) of (4.3).

4.1 Numerical Results

Consider a model with the following parameters: A = 15, c =2, a = 0.5, Raa =

0.5, Rdd = 0.6, Caa = 0.5, pA = 0.5, pK = 0.5, y = 5, s = 10. Table 4.1 displays the long

run average number of targets waiting or being served by the shooter-servers

and the long run average number of live targets waiting or being served by the

shooter-servers as a function of Cdd for the queuing network model of Section 1.

Also displayed are the values of the total number of targets waiting or being

served at the shooter servers, A0(100) + A1(100) + D0(100) + D1(100), as a function
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of Cdd and the long run average number of live targets waiting or being served at

time 100, Ao(100) + A1(100), for the deterministic model of Subsection 4.2. The

deterministic model was evaluated using the 4 th/ 5 th order Runge-Kutta-

Fehlberg method as implemented in MATLAB. Comparison with Table 3.1

indicates that the deterministic model with effective arrival rate (4.1a) - (4.1d)

and (4.2) gives the same steady state results as the deterministic model of Section

3 for most cases. The effective arrival rate (4.1a) - (4.1d) and (4.2) is preferable

since it will allow the deterministic model to gracefully decrease if the arrival

rate of targets into the area at time t, A(t) tends to 0.

Table 4.1
Targets Waiting or Being Served by the Shooter Servers

Cdd M/M/10 Deterministic M/M/10 Deterministic
Average Number of Average Number of

Number of Targets at Number of Live Targets
Targets time 300 Live Targets at time 300

0.1 - 1163.0 662.6
0.2 - 572.3 - 335.2
0.3 65.3 61.8 39.8 37.7
0.4 16.9 15.7 11.1 10.3
0.5 11.8 10.8 8.2 7.6
0.6 9.6 9.0 7.2 6.7
0.7 8.4 7.9 6.7 6.4
0.8 7.6 7.3 6.5 6.2
0.9 7.0 6.7 6.3 6.1
1.0 6.4 6.3 6.2 6.1

-queuing model is saturated
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5. Summary

The present paper finds the explicit long-run stochastic behavior for a

scenario that envisions targets (Red assets) entering a region, being detected and

targeted. The surveillance rate, probability of correct classification, kill

probability, and BDA capabilities are all bounded, so targeting is conducted in a

realistic environment of imperfect and uncertain sensor-shooter system

performances. Such models permit quick investigation of tradeoffs in system

element capabilities. The explicit stochastic representation provides insights into

the ultimate variabilities and uncertainties encountered when detection,

classification, and BDA are collectively or individually mediocre to poor. Such

conditions can be induced by effects that are not explicitly modeled here, such as

Red use of low-value decoys and sophisticated "play dead" tactics by live assets

that have received plausible (Blue) fire.
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